In Section 5.1 of our article we show that there is a strong correlation between our attention features and certain features derived from power spectrum of the audio sample (we will call them "spectral features") that are commonly used in speech analysis. Here we present the full results for Pearson Correlation coefficient between Spectral features and all 6 of our attention features (see paragraph Features in Section 2 of the paper), namely:
Average element of the trace of the attention matrix ![]() |
Asymmetry measure of the attention matrix ![]() |
Average attention to the next element ![]() |
Average attention to the previous element ![]() |
Hm, sym0 ![]() |
Hm, pc0 ![]() |
 
Designed in Notepad and hosted by Github. (C) TopoHuBERT team, 2023.